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The 2007 January 24-26 CMEs

❂ First major CMEs observed by the SECCHI suite…
… but with a 20 hour gap while the CMEs were in HI1’s FOV.

❂ 1st CME: 01/24 @14:03 ~700 km/s - 2nd CME: 01/25 @06:43 ~1200 km/s
❂ Data gap: 01/25 06 UT to 01/26 00 UT
❂ Studied by Harrison et al. (2008) and Webb et al. (2009).
❂ Simulated by Lugaz et al. (2009) and Odstrcil et al. (2009).
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Simulation set-up

❂ Space Weather Modeling Framework (Univ. Michigan)
❂ Solar wind model of Cohen et al. (2007), out-of-equilibrium flux ropes

chosen to match initial observed speed.
❂ From 1RSun to 1 AU: 40,000 43 blocks + 15,000 83 blocks (> 10M cells)

Solar surface and current sheet Heliospheric current sheet Density and magnetic field at 1 AU

Earth (2007, January 24)AR 940
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Line-of-sight images

❂ Simulated background is calculated by deriving the minimum
image from 27 steady-state LOS images.
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Heliospheric Evolution

❂ Near solar minimum: there are a number of steady structures (CIR-like).
❂ Interaction involves not only the 2 CMEs but also these dense streams.
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Heliospheric Imagers: what is
being observed?

1st CME

2nd CME

2nd CME is brighter because the leading front propagates inside the sheath of the 1st CME.
Dense stream can be identified as such in these images, because its propagation speed is different.

Dense
Stream,
compressed
by the 2
CMEs



Institute for Astronomy

University of Hawai`i

EGU

May, 6, 2010

Time-elongation plots

Time (from 01/25)-elongation plots for PA 69  (apparent central PA of SECCHI).
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Simulations as laboratory:
Testing position and velocity estimates

❂ Here testing method to derive position from elongation measurements
(Kahler et al., Rouillard et al.).

Fixed-Phi: Approximates CME with a single point
Point-P: Approximates CME with an expanding sphere centered at the Sun

❂ Position is well determined up to 0.5 AU.
❂ Speed is not very well determined from existing methods, especially for

wide, limb ejections past 0.5 AU.
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New geometrical method to derive
CME position from elongation angle

(Lugaz et al. Ann Geo, 2009)

❂ Instead of using single-point
approximation or assuming a
spherically symmetric front we
use a sphere attached to the Sun.

❂New assumption is good for wide
CMEs (better than Point-P).

❂ It can be shown that:



Institute for Astronomy

University of Hawai`i

EGU

May, 6, 2010

Simulations as controlled
laboratory environment

❂ Testing fitting methods to derive CME direction.
❂ Devised for plasma blobs/CIRs with 3 assumptions:

constant direction,
small CME width,
constant speed.

stereoscopic methods: Liu (2010), Lugaz (2010) in ApJ
statistical study or different assumption
statistical study difficult (lack of fast CMEs)
Simulations

❂ Worst case scenario for fitting method:
Fast CME
Very wide
In front of a coronal hole (not done here)

❂ We do a simulation of a 800 km/s wide
CME (at 20 Rs) into a solar minimum
configuration (bipolar magnetic field).



Institute for Astronomy

University of Hawai`i

EGU

May, 6, 2010

Same CME from 2 different view
points
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J-maps and direction

❂ “Geometrical” acceleration/deceleration not as clear as expected.
❂ Good for small directions (halo CMEs), large underestimation of large

directions (limb CMEs).
❂ MORE at my poster tomorrow (EGU2010-3691).

Best fit: 606 km/s and 42o

[561-694] and [27o,66o]
Best fit: 619 km/s and 31o

[585-659] and [22o,45o]
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Conclusion

❂ Simulations are an important tool in support of HI observations
❂ For complex events (CME-CME interaction):

What happened? (Lugaz et al., Sol. Phys., 2009, Webb et al, Sol Phys, 09)
Testing different physical mechanisms (Lugaz et al., Ann. Geo., 2009)

❂ To test and validate methods:
Simulations are like a controlled laboratory environment:

CME speed and direction are known,
Can vary only one parameter.

We tested the Fixed-Phi and Point-P approximations.
We devised a new approximation which fits better our simulated CME and
is important at large elongation angles (beyond 40o).
Lack of fast/wide CMEs may explain why fitting method work so well so
far.

❂ Thanks to NASA and NSF for funding.


